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A numerical simulation of the transition to turbulence is performed using a finite element 
method. The unsteady Navier-Stokes equations are discretized using a standard Calerkin 
approximation and a loading strategy for increasing the Reynolds number. The numerical 
results are then analysed at different Reynolds numbers showing a transition from a steady- 
state solution to a weakly chaotic one. Phase space diagrams are presented showing the 
presence of strange attractors. The dimension and Lyapunov’s exponents of these attractors 
are computed and compared with existing results in the literature. 0 1985 Academic Press. Inc. 

1. INTRODUCTION 

Numerical methods in fluid dynamics are reaching a turning point. The reasons 
for this are multiple and come from two apparently opposite directions, that is, the 
development of new computers and the development of new theoretical models. 

From the hardware point of view, supercomputers on one hand, as well as the 
widely available mini-computers, have made possible numerical expe~me~tatio~s 
that were unthinkable a few years ago. 

From the theoretical point of view, our qualitative understanding of the behavior 
of solutions to the Navier-Stokes equations has made huge progress There is now 
no question that these equations can be expected to model the complex phenomena 
associated with transition to turbulence. Bifurcation theory methods, applied to 
simplified model problems, yield predictions that are amazingly close to real 
phenomena and lead one to believe that transition to chaos follows some rather 
generic patterns [ 1, 21. However, numerical evidence that these patterns apply to 
the Navier-Stokes equations is quite rare even if theoretical results have 
obtained (see Constantin et al. [3]). The reason is that an accurate simulation of a 
flow problem requires a very large number of degrees of freedom and the long time 
runs necessary to correctly simulate bifurcation phenomena are rather expensive in 
computer time. 
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In the present paper, we present a simulation of the transition to chaos in a two- 
dimensional fluid. The example treated was introduced for reasons totally unrelated 
to a bifurcation study and it was indeed by chance that this study was begun. The 
initial aim was to simulate the steady-state problem in a geometry relative to the 
design of a turbomachinery device. It was rapidly obvious that there was a limiting 
Reynolds number after which our solution algorithm, based on the New- 
ton-Raphson method, was no longer convergent. Although theoretical results show 
that steady-state solutions of the Navier--Stokes equations exist for all Reynolds 
numbers (indeed the generic situation is a finite number of solutions, cf. Temam 
[19]), it is also expected to meet a Hopf bifurcation in the solution of the time- 
dependent Navier-Stokes problem from both experimental and theoretical con- 
siderations. 

A careful continuation method could track a steady-state solution beyond a Hopf 
bifurcation, but a simple incremental loading in Reynolds number could not follow 
an unstable branch. A time-dependent computation will follow stable branches and 
become periodic. 

Moving to a time-dependent simulation soon confirmed this hypothesis. A 
Karman vortex street could clearly be seen behind the blades of our turbine, and 
the solution was clearly periodic. A Fourier analysis further confirmed this and 
displayed a fundamental frequency and a few harmonics. 

From a practical point of view, this established that a time-dependent simulation 
was indeed necessary. The question remained of knowing what would happen if the 
Reynolds number was further increased. 

Using a computer that fortunately was free at night, we pursued a set of tests 
slowly increasing the Reynolds number. A period-doubling bifurcation (also called 
subharmonic bifurcation) then appeared followed by a second one. To our 
knowledge this was one of the largest systems for which such a phenomena was 
observed in numerical simulations. Still increasing, one then sees a second indepen- 
dent frequency coming in and finally a continuous spectrum that can be described 
as chaos. 

We now present these results and some estimates of the dimension of the attrac- 
tor and of Lyapunov’s exponents in order to assess the strangeness of the attractor 
observed. Finally, we shall discuss some questions remaining unanswered as a result 
of this simulation. 

2. DESCRIPTION OF THE PROBLEM AND ITS DISCRETIZATION 

Our starting problem was to simulate an incompressible flow in a section of a 
turbomachine. As a first approximation we used the two-dimensional 
NavierrStokes equations, 

auj/at- (2/Re) a/ax,(o,j(u))+(~.v)ui+(vp)i=fi 161’62 (2.1) 

v-u=o, (2.2) 
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(11 (given) 

(2) periodicity condition 

(3) u = 0 (no-slip) 

(4) free outlet (inn = Tnt = 0) 
(4) 

FIG. 2.1. Geometry and boundary conditions. 

where u = (uI, u2) is the velocity field, p is the pressure, and 

D&u) = $%l/ax, + au,/ax,). (2.3) 

Equations (2.1) and (2.2) must be solved in a domain Q along with ap 
initial and boundary conditions described in Fig. 2.1. 

This is known as a cascade flow: periodicity conditions mean that this can be 
thought of as a section of a circular turbine. 

We first consider a steady-state problem and discretize the system (2.1) by a skan- 
dard Galerkin formulation and a standard finite element approximation. The 
domain is divided into quadrilaterals, velocity is interpolated by a full b~q~a~~at~e 
approximation and pressure is taken piecewise linear and discontinuous (see 
Fig. 2.2). This element can be shown to be second order accurate and to satisfy the 
inf-sup stability condition of Brezzi [4] and Babuska ES] (cf. Fortin, [6] for a dis- 

FIG. 2.2. The element used: (.) velocity degrees of freedom (uI. uz), ( x ) Pressure degrees of feeedom 

(~,a~ia~, way). 
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- 392 elements 

- 3038 Velocity unknowns 

- 1176 pressure unknowns 

FIG. 2.3. Finite element mesh. 

cussion of related elements). This choice of element was made from the experimen- 
tal evidence that it is one of the best two-dimensional elements on a cost-accuracy 
scale. 

We, moreover, used the trick of Fortin-Fortin [7] to eliminate internal nodes. 
The mesh used (Fig. 2.3) was based on a 8 x 49 partition of the blade-to-blade 
region. 

When a time-dependent problem was solved, we used a Gear’s scheme based on 
the approximation 

aupt = ( 3un+ l -4u”+un~‘)/2dt+c3(dt~). (2.4) 

This second order accurate two-step method is known to be stiff stable. It yields an 
implicit scheme: at each time step a non-linear problem has to be solved. We used a 
variant of Newton’s method described in Fortin-Fortin [S] which marries a stan- 
dard Newton-Raphson technique with a Uzawa’s iteration (cf. FortinGlowinski 
[21]) for the incompressibility constraint. Moreover, in order to reduce com- 
putational cost, the matrix in Newton’s method was kept fixed as long as the 
method converged in less than 5 iterations for each time step. Whenever this limit 
was exceeded, the matrix was updated and refactorized. The total result was a 
robust and stable solution scheme that provided a quite reasonable approximation 
of the Navier-Stokes equations in the present state of the art (although a finer mesh 
would of course be preferable). 
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FIG. 3.1. Amplitude vs frequency. (a) Re = 1200, (b) Re = 1700, (c) Re = 1900, (d) Re = 2000, 
(e) Re = 2100, (f) Re = 2200. 
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3. DESCRIPTION OF THE E~PENMEN 

Having realised that in the problem at hand it was impossible to get a steady- 
state solution for a Reynolds number larger than about 600, even with a careful 
loading procedure, it was quite natural, from general knowledge of fluid behavior, 
to think that a bifurcation could have occurred towards an unsteady, probably 
periodic, solution. Starting the time-dependent code from the last steady solution 
and increasing the Reynolds number, it was soon observed that a Karman vortex 
street had indeed developed behind the turbine blade. A Fourier analysis of a sam- 
pling of the velocity at a few points indeed showed a perfect periodic pattern 
(Fig. 3.la). Increasing the Reynolds number by small steps ( zz 50), the next 
phenomenon to occur was a period doubling at about Re = 1700 (Fig. 3.lb). 
A sequence of period doublings being a feature on the route to chaos, one could 
wonder whether or not other period doublings would be observed, presumably 
following Feigenbaum’s law [9] 

(Re,, 1 - Re,)/(Re,+, - Re,, 1) z 4.6692016, (3.1) 

at least approximately. Indeed around Reynolds number 1900, a second period 
doubling can be observed in the spectrum (Fig. 3.1~). It is, however, weak and a 
further increase makes the whole pattern disappear. At Re = 2000, one observes 
rather the appearance of two independent frequencies (Fig. (3.ld) well characterized 
by beats. Finally at Re = 2200, the spectrum can be thought of as continuous, even 
if a fundamental frequency is still apparent (Fig. 3.lf). 

Two explanations can be advanced for this phenomenon. It is possible that chaos 
could be obtained through successive period doublings but that the resulting 
periodic solutions are becoming less and less attractive and that our system jumped 
to the basin of another attractor (e.g., a two-dimensional torus) and followed then 
another branch of bifurcations. Such a jump could have been triggered by a change 
in time step that was made in order to keep the convergence of our Newton’s 
method fast enough. Another possible explanation is that varying the time step 
indeed changed our system to a two-parameter system and in such systems many 
competing scenarios leading to chaos are possible (cf. Holmes [16]). It must be 
noted that both period doubling or multiple frequencies are observed in experimen- 
tal situations (cf. Gollub-Benson-Steinman [Z], Ruelle [ 11). 

4. PHASE DIAGRAMS, DIMENSION CALCULATION, AND LYAPUNOV'S EXPONENTS 

Other insights can be obtained from visualization of the flow. Streamlines indeed 
show a modification of the flow (Fig. 4.1). Although one still observed a vortex 
shedding at Re = 2200, it is now irregular in the size of the vortices and the delay 
between their appearance. But the most informative figures are phase portraits. 
They are computed by mapping values of the velocity at the same point but 
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FIG. 4.1. Streamlines over one period. (a) Re = 1700, (b) Re = 2200 

separated by multiples of a fundamental delay T, that is, by forming vectors of t 
form 

(V(t), V(t + T), V(t + 2T),..., V(t + (m - 1) ‘2-j) = (4.1) 

in an m-dimensional space. 
One can expect (Takens [lo]) B,(t) to possess the same properties as the 

dynamical system with N variables for m large enough. Indee , for m32N-f 1, f 
gives generically an embedding of the phase space of the dyn icai system into t 

58: :70;2-3 
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FIG. 4.2. Phase diagrams (m=2), (V(t+ T) vs V(f) (T=0.575)) at point PI: (a) Re= 1200, 
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m-dimensional space. However, one may expect to obtain valuable information for 
a much smaller m. The choice of T is arbitrary. However, if the phenomenon under 
study is periodic (with period z), then T must be different from z since in that case, 
the phase diagram would be compressed on the diagonal. A good approximation 
for T is 2/4 but this choice must be ajusted by trial and error to give the best 
representation. 

Figure 4.2 presents phase diagrams for m = 2 for different values of the Reynolds 
number and at different sampling points P, , P,, and P, (see Fig. 2.1). These 
diagrams clearly follow the results of the Fourier analysis. For Re = 1200, the sim- 
ple loop corresponds to a simple periodic motion. Period doubling (Re = 1700) 
indeed produces a doubling of the curve, while the second (weak) period-doubling 
at Re = 1900 again makes a second separation appear, this time hardly dis- 
tinguishable with respect to noise. Results for Re = 2000 introduce a drastic change, 
the diagram clearly looks like a two-dimensional strip embedded in a higher dimen- 
sional space. For Re = 2100, this begins to lose sharpness and at Re = 2200, we 
have a clearly “chaotic” behavior possibly over an underlying average periodicity. 

Another interesting way to characterize the flow consists in computing the 
dimensions of the attractors whose two-dimensional projection are depicted in the 
previous figure. There exists many definitions of dimension more or less related to 
the Hausdorff dimension. Let us recall that if we have a bounded subset of a 
p-dimensional euclidian space RP, then 

d 
H 

= lim hsWp(E)) 

E’O log(&) ’ (4.2) 

where NJE) is the minimum number of p-dimensional boxes of side E required to 
cover the set. It should be noted that the dimension defined above is usually 
referred to as the capacity of a set but it seems that the Hausdorff dimension and 
the capacity are the same for attractors (see Grassberger-Procaccia [ 111). From a 
practical standpoint, Eq. (4.2) becomes rapidly useless due to the formidable 
amount of computation involved when p is large and E small (cf. Greenside-Wolf- 
Swift-Pignataro [ 121). Consequently other dimension definitions have been 
proposed to overcome the numerical impracticality of Definition 4.2. We have 
adopted what is called the correlation dimension (cf. Grassberger-Procaccia [13]) 
defined as 

d 
c 

= lim 10dcp(E)) 

E’O log& ’ 
(4.3 1 

where C,(E) is the number of pairs of data points whose separation in phase space 
is less than E, divided by N2. That is, 

(4.4) 

i#i 
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FIG. 4.3. Dimension computation (Log CJE) vs Log E). (a) Re = 1700 (slope =: 1.16), (b) Re = 20fM 
(slope N 2.23), (c) Re = 2200 (slope Y 2.57). 
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where 8 is the Heaviside function, Zi and Xj a pair of data points in the phase space 
of dimension p, and N the total number of data points. It has been shown [ 131 that 
(4.3) and (4.2) give very similar results when both are applicable. To obtain the 
correlation dimension, one has first to fix a value for the phase-space dimension p 
(p = 2, e.g.), compute C(E) for different values of E, plot the graph of log(C(s)) ver- 
sus log(c) and determine the slope of that curve (by a least square method, e.g.). 
This algorithm is then repeated with an increased value of p until the slope of the 
curve becomes independent of p. 

The phase-space diagrams (Fig. 4.2) lead us to think that the dimension of the 
attractors should be one up to Re=2000, where it must be around two. For 
Re = 2200 the apparently chaotic behavior should correspond to a fractal dimen- 
sion. The results, shown in Fig. 4.3, are not as clear as could be hoped but 
nevertheless agree with intuition. The difficulties arise of course from the large num- 
ber of points necessary to estimate the dimension. The 8000 points we used are 
indeed a small number compared to the 20,000 normally used for similar com- 
putation. It must be recalled that each of these points requires the solution of the 
full non-linear Navier-Stokes equations and consequently this number was the 
maximum we could afford. The conclusion from this calculation is that at 
Re = 2200, the dimension of the attractor is around 2.57 and is surely strictly larger 
than 2 and smaller than 3. We thus have an attractor of fractal dimension. The last 
question was whether this attractor was indeed strange or in fact chaotic (in the 
sense of Gregobi et al. [17]). The criterion for “chaoticity” is the existence of a 
positive Lyapunov exponent. Let us recall briefly the definition of a Lyapunov 
exponent (see Farmer [ 141). 

Let us consider an infinitesimal ball that has radius E(O) at t = 0 and located in 
the basin of attraction of the attractor. As time goes on, the ball will distort but 
since E is very small, the change in shape is determined only by the linear part of the 
flow, and thus the ball remains ellipsoid. We thus define the Lyapunov exponents 

li = lim lim (l/t) log(.sj(t)/s(0)), 
t-02 E(O)‘0 

l<idp, (4.5) 

where the si(t) are the principal axes of this ellipsoid. A more intuitive insight is 
obtained by replacing (4.5) by 

Ei( t) z E(0) d”, 1 didp, (4.6) 

when t is large and E(O) small. It is usually accepted as a definition that strange 
attractors are characterized by (at least) one positive Lyapunov exponent, 
expressing an exponential divergence of two nearby trajectories in that direction. 
Since the attractor is bounded, this exponential divergence implies a systematic 
folding process generally giving rise to a set of fractal dimension. 
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FIG. 4.4. K,,(e) vs p (E = 0.02). (i) Re = 2200, (ii) We = 2000, (iii) Re = 1200. 

However, it is difficult to compute directly the Lyapunov exponents. FortunatePy, 
Grassberger and Procaccia [ 15 ] have shown that the quantity 

K,= lim ~fog(C,(s))-10g(C~+~(s))= Bi 
P-m P+m &“O f.+O 

(4.1) 

is a lower bound for the sum of positive Lyapounov exponents (T d 
Figure 4.4 displays the evolution of KJE) with respect to p. For 

e = 2000, the curve clearly converges towards 0. For Re = 2200, th 
a lower bound around 1.5 showing that at least one Lyaptmov exp 
and that the attractor is indeed strange. 

5. CONCLU§ICkN 

This numerical experiment seems to confirm a few theoretical results an 
tures concerning the relation between bifurcation theory, strange attrac- 
id flow problems. Indeed, we have shown that an attractor of fractaf 
as present in our problem confirming the results of Teman-Foias [%] 

who gave a theoretical upper bound for this attractor. We have also esta~~~s~e 
link between bifurcation theory and fluid mechanics problems by sh 
results from more or less elementary bifurcation problems are also vah 
plex models such as the Navier-Stokes equations. The question of course arises 
whether the pheno,nena we present are really related to fiuid mechanics: they coul 
be merely artifacts of the numerical approximation and disappear for smaller mesh- 
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stable periodic 

FIG. 5.1. Hopf bifurcation diagram. 

size. The cost of a computation on a much smaller mesh does not enable us to give 
a definitive answer now. Some facts, however, lead us to think that the transition 
described is at least qualitatively correct (but might not be the only one possible): 

(i) The computed flow is realistic and in fact very weakly chaotic. 

(ii) A similar study, using spectral methods on a purely academic problem, 
has been performed by Lafon [18]. Although the problems and the numerical 
methods are totally different, the results obtained are strikingly close. This permits 
us to think that the phenomena observed are indeed related to the Navier-Stokes 
equations themselves and not to a numerical procedure. This study of Lafon also 
shows that the periodic component still visible in the spectrum at Re = 2200 is 
likely to disappear for higher Reynolds number and that a fully developed chaos 
will ultimately appear. 

(iii) The route to chaos that we observed seems to be quite generic. The 
reader should compare the spectra of Fig. 3.1 with those of Ref. [20], which come 
from experimental study of a chemical reaction. Some are close enough to be 
interchanged. 

From a mathematical point of view, the effect of mesh size on bifurcation results 
can be seen as a perturbation by a second parameter. It must be emphasized that a 
Hopf bifurcation (Fig. 5.1) is generically stable under such a perturbation in the 
sense that it will not be changed to another type of diagram (cf. Chaps. VI and VIII 
of [22] and Sect. 4 of [23]). This stability does not hold in a pitchfork bifurcation 
of steady solutions (Fig. 5.2a) where the perturbed diagram may even contain limit 
points (Figs. 5.2b and c) (cf. Chap. III of [22]). Following discretized branches of 
steady solutions may thus make spurious solutions appear. Unsteady solutions are 
likely to meet and follow the physically expected transition to a periodic solution. 

Finally, many questions arise from this work. For example, one may wonder 
whether or not it is possible to recover useful information from the computed 
chaotic flow, for instance, drag coefficients or some other engineering quantity. 
Another interesting idea would be to compare the chaos obtained with the 
hypothesis of standard turbulence models, in particular with respect to isotropy. In 
order to pursue these goals we are now studying the possibility of doing the same 
kind of experiment on a geometry where experimental data are available for com- 
parison. 
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